484,522 research outputs found

    Circumstellar chemistry

    Get PDF
    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves

    Controlled reduction of photobleaching in DNA origami gold nanoparticle hybrids

    Get PDF
    The amount of information obtainable from a fluorescence-based measurement is limited by photobleaching: Irreversible photochemical reactions either render the molecules nonfluorescent or shift their absorption and/or emission spectra outside the working range. Photobleaching is evidenced as a decrease of fluorescence intensity with time, or in the case of single molecule measurements, as an abrupt, single-step interruption of the fluorescence emission that determines the end of the experiment. Reducing photobleaching is central for improving fluorescence (functional) imaging, single molecule tracking, and fluorescence-based biosensors and assays. In this single molecule study, we use DNA self-assembly to produce hybrid nanostructures containing individual fluorophores and gold nanoparticles at a controlled separation distance of 8.5 nm. By changing the nanoparticles? size we are able to systematically increase the mean number of photons emitted by the fluorophores before photobleaching.Fil: Pellegrotti, Jesica Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Acuña, Guillermo. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Puchkova, Anastasiya. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Holzmeister, Phil. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Gietl, Andreas. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Lalkens, Birka. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tinnefeld, Philip. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; Alemani

    Physical Chemistry of Gas-Liquid Interfaces: Foreword

    Get PDF
    Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas-liquid interfaces are all around us, especially within atmospheric systems such as sea spray aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments

    Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    Get PDF
    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program

    Missing Elements and Missing Premises: A Combinatorial Argument for the Ontological Reduction of Chemistry

    Get PDF
    Does chemistry reduce to physics? If this means Can we derive the laws of chemistry from the laws of physics?', recent discussions suggest that the answer is no'. But sup posing that kind of reduction-- epistemological reduction'--to be impossible, the thesis of ontological reduction may still be true: that chemical properties are determined by more fundamental properties. However, even this thesis is threatened by some objections to the physicalist programme in the philosophy of mind, objections that generalize to the chemical case. Two objections are discussed: that physicalism is vacuous, and that nothing grounds the asymmetry of dependence which reductionism requires. Although it might seem rather surprising that the philosophy of chemistry is affected by shock waves from debates in the philosophy of mind, these objections show that there is an argumentative gap between, on the one hand, the theoretical connection linking chemical properties with properties at the sub-atomic level, and, on the other, the philosophical thesis of ontological reduction. The aim of this paper is to identify the missing premises (among them a theory of physical possibility) that would bridge this gap. Introduction: missing elements and the mystery of discreteness The refutation of physicalism A combinatorial theory of physical possibilia Combinatorialism and the Bohr model Objections The missing premises and a disanalogy with min

    Educational activities for physical pharmacy classes on colloids

    Get PDF
    Colloids are an important component of physical chemistry and physical pharmacy curricula. In pharmacy, colloidal systems and concepts are encountered in dosage forms (e.g., suspensions, emulsions) and many drug delivery systems (e.g., nanoparticles). Since colloids may appear rather theoretical in nature and may be difficult to grasp when taught to students for the first time, practical activities are invaluable in teaching this topic. This paper presents some useful activities for classes on colloids that may be incorporated in physical pharmacy and physical chemistry courses

    Solvation thermodynamics of organic molecules by the molecular integral equation theory : approaching chemical accuracy

    Get PDF
    The integral equation theory (IET) of molecular liquids has been an active area of academic research in theoretical and computational physical chemistry for over 40 years because it provides a consistent theoretical framework to describe the structural and thermodynamic properties of liquid-phase solutions. The theory can describe pure and mixed solvent systems (including anisotropic and nonequilibrium systems) and has already been used for theoretical studies of a vast range of problems in chemical physics / physical chemistry, molecular biology, colloids, soft matter, and electrochemistry. A consider- able advantage of IET is that it can be used to study speci fi c solute − solvent interactions, unlike continuum solvent models, but yet it requires considerably less computational expense than explicit solvent simulations
    • …
    corecore